
Evaluating the validity-precision trade-off assuming constancy  
 
Validity is how closely an estimate of an association comes to the ‘truth’ (i.e., the opposite of 
bias) and we cannot generally know the validity of a measure in observational epidemiology 
because  
 

• we cannot make measurements in the entire population of the planet (the ‘truth’) 
because the observed measurements depend on the sample we are studying and the 
luck of the sample we draw  

• measures may change over time (asthma, autism, etc.)  
 
Precision is a measure of the accurately we measure an estimate of association (e.g., a 95% 
confidence interval), regardless of validity.  
 
Consider a dartboard, where the center (‘cork’ in darts-speak) is the ‘truth’. You might throw 3 
darts into the board that are widely spread, but average to the center. This situation is 
analogous to a valid, but not very precise, measure. On the other hand, you might throw 3 darts 
into the triple (inner ring) 20 segment. This situation is analogous to a precise, but significantly 
biased, measure.  
 
There is a trade-off between validity and precision. We control for confounding to reduce bias in 
our estimate of an association, but the trade-off here is that the precision of an estimate 
generally decreases as we add variables to a model. The question to address is how to balance 
validity and precision as we model our system.  
 
So, if the difference between a crude and adjusted main exposure effect estimate is “large”, 
then the amount of bias due to confounding is “large” and we might be inclined to sacrifice some 
precision to obtain a less biased estimate.  
 
However, if the difference between a crude and adjusted main exposure effect estimate is 
“small” but the loss of precision is significant, then we must evaluate whether to adjust for the 
confounder.  
 
On the other hand, if the difference between a crude and adjusted main exposure effect 
estimate is “small” and the loss of precision is minor, the penalty for adjustment may be 
negligible.  
 
We will use a “mean squared error” approach to contrast the “penalty” from reduced precision 

with the “gain” from increased validity that occurs when we model the minimally sufficient 

adjustment set of confounders identified using a DAG. 

The mean squared error (MSE) of an effect estimate is approximated as (MSE = bias2 + 
variance), where the “bias” is the difference between an adjusted estimate and a crude (or 
reduced) estimate.  
 
Here, the component of bias we are considering is just the confounding by one or more 
adjustment variables in the minimally sufficient conditioning set we identified by analyzing our 
DAG. We are assuming that our DAG is correct, that we have measured all our variables 
accurately, and that we have specified them properly in our model.  
 
 



For the RD, the reduction in bias (i.e., the reduction in confounding) is the change in the RD, B 
= RDadjusted - RDreduced.  
 
We square this value and add it to the change in the variance, ΔV = var(RDadjusted) - 
var(RDreduced) and call this value M.  
 
For two models, unadjusted model 1 (with MSE=M1=B12 + ΔV1) and more-adjusted model 2 
(with MSE=M2=B22 + ΔV2).  
 
If M1>M2, the validity-precision tradeoff favors adjustment. If M1<M2, the tradeoff favors not 
adjusting.  
 
For the RR and IOR, we assess the validity-precision tradeoff on the natural log scale. 
  
For the RR: B = lnRRadjusted – lnRRreduced and ΔV = var(lnRR)adjusted – var(lnRR)reduced 
  
For the IOR, B = lnIORadjusted – lnIORreduced and ΔV = var(lnIOR)adjusted – var(lnIOR)reduced  

 

The validity-precision tradeoff can be assessed starting with a fully-adjusted estimate from a 
model that includes all of the covariates in the minimally sufficient adjustment set, and then 
considering the validity-precision tradeoff for each adjustment variable by deleting them one-by-
one from the model. If this approach is taken and more than one adjustment variable is 
dropped, the tradeoff should be assessed again, this time comparing “full adjustment” with 
adjustment for the reduced set of covariates. You will be doing this in section B of this lab.  
 

• Note that all change in estimate methods, including the one described above, assume 
that “adjusted” estimates are less biased than unadjusted estimates; however, 
“adjustment” can increase bias if the covariate is poorly measured or incorrectly 
modeled. In addition, change in estimate methods cannot identify covariates that are 
affected by the outcome or the exposure. Always use prior information to determine 
whether to adjust and how to adjust for covariates, before using change in estimate 
methods to assess confounding.  

• If confounders are identified (i.e., using a DAG), measured, specified and modeled 
appropriately, a “fully adjusted” estimate will be the most unbiased; therefore, it should 
be the standard to which less adjusted estimates are compared.  

 
This may be referred to as “backward deletion” when used to select a subset of confounders for 
adjustment, since change is assessed as covariates are removed from a fully-adjusted model.  
 
Alternatively, a “forward selection” strategy may be used when it is not possible to model all 

potential confounders simultaneously (e.g., when data are sparse or covariates are highly 

correlated), with changes in precision and validity evaluated relative to a crude effect estimate 

as confounders are added to a model. 

These methods apply to the situation where you have a main exposure of interest. If your 

interest is in prediction or if numerous covariables are of equal interest, there are other 

considerations involved to evaluate model building. 


