Guidelines for Data Collection & Data Entry

Theresa A Scott, MS

Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/TheresaScott

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

Outline and references

- ▷ Steps to data collection and entry:
 - **1** Create your data dictionary.
 - **BEFORE** any data is collected.
 - **2** Create your data file(s).

▷ References:

- Designing Clinical Research (3rd edition) by Hulley, et al.
- "The Little Handbook of Statistical Practices" Gerard Dallal.
 - http://www.tufts.edu/~gdallal/LHDP.HTM
- "10 Data Entry Commandments" and "Spreadsheets from Heaven/Hell" from Daniel W Byrne, MS.

1/24

Introduction

▷ **Before** any data is collected, write a detailed list of the information to be collected and the concepts to be measured in the study.

- Directly relates to the specific aim(s) of the study.
- Make sure the list includes all the information needed to
 - 1 describe the *sample* of "subjects" you will study
 - 2 perform the planned statistical analysis.¹
- If using a questionnaire, make sure all the necessary information is collected in the questionnaire.

 \triangleright The collected data items will be stored as *variables*.

 \triangleright Helpful to define the role of each variable:

• Outcome, predictor, confounder, or additional descriptor².

¹Meet with your statistician.

²Used to describe your sample of "subjects."

Theresa A Scott, MS (Vandy Biostats) Data Collection & Entry

Role of collected variables

Convert the detailed list to a *data dictionary*

▷ A document that includes a description of the study variables and data management procedures.

 \triangleright For each variable, it includes the

- variable name,
- role of the variable (in the statistical analysis),
- variable label,
- unit of measurement (if applicable),
- type of variable,
- permissible values or range of values
- definitions of redefined and derived variables
- additional edits to be performed (eg, logic/consistency checks).

▷ Should be created *before* any data are collected.

Expect revisions and review with your statistician.

Data Collection & Entry

The data dictionary in more detail

- \triangleright Variable name: used to identify the variable in the *data file(s)*.
 - Should be short but understandable/self-explanatory.
- ▷ Variable label: "Pretty" label to fully describe the variable.
 - Example: "Age at baseline".
- ▷ Type of variable:
 - **Continuous:** has any number of possible values (eg, weight).
 - Discrete numeric set of possible values is a finite (ordered) sequence of numbers (eg, pain scale of 1, 2, ..., 10).
 - **Categorical:** has only certain possible values (eg, race).
 - Binary (dichotomous) a categorical variable with only two possible values (eg, gender).
 - Ordinal a categorical variable for which there is a definite ordering of the categories (eg, severity of lower back pain as none, mild, moderate, and severe).

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

7 / 24

The data dictionary in more detail, cont'd

▷ **Permissible values:** (for categorical variables)

- Can be coded as numeric or text values.
- Example: For gender (a binary variable)
 - Numeric coding: 0 (Female) and 1 (Males).
 - Text coding: "F" (Female) and "M" (Male).
- Which to use depends on the target statistical program.

▷ Permissible range of values: (for continuous or discrete numeric variables)

 Purpose: to guide data editing – values outside the defined range must be checked for accuracy.

▷ **Redefined/derived variables:** should be (re-)calculated by your statistician (eg, BMI).

Additional considerations

▷ Continuous variables: Keep continuous, don't categorize.

- If collected categorized, original continuous values can't be recovered and can't recode with new categories.
- \triangleright Be consistent with
 - Text coding of categorical variables many statistical programs are case-sensitive (eg, "M" ≠ "m").
 - Date formats (eg, mm/dd/yyyy).
 - Representation of missing values (eg, blank or NA).
- ▷ Break up *non-mutually exclusive* values.
 - Example: Maternal complications of bleeding, high blood pressure, and fever can occur in any combination.
 - Code as three separate Yes/No columns of bleeding, high blood pressure, and fever (instead of a single text field).

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

9 / 24

Example data dictionary

Name	Role	Label	Units	Туре	Values
GROUP	Predictor	Treatment		Binary	1 = Placebo;
					2 = Treatment
AGE	Predictor	Age	Years	Continuous	18 - 75
SEX	Predictor	Gender		Binary	1 = Female;
					2 = Male
HT	Predictor	Height	in.	Continuous	48 - 96
WT	Predictor	Weight	lbs.	Continuous	75 - 350
НСТ	Predictor	Heart rate	beats/min.	Continuous	30 - 50
BPSYS	Predictor	Systolic BP	mmHg	Continuous	100 - 160
BPDIAS	Predictor	Diastolic BP	mmHg	Continuous	80 - 150
STAGE	Predictor	Stage of cancer		Discrete	1 - 4
				numeric	
RACE	Predictor	Race		Categorical	1 = White;
					2 = Black;
					3 = Other
DATE1	Additional	Date of surgery			mm/dd/yyyy
COMPLIC	Outcome	Complications?		Binary	0 = No;
					1 = Yes

Introduction

▷ Most common and easily accessible approach to creating your data file(s) is to use a *spreadsheet* program, like Microsoft Excel.

 Easy to enter the data values directly into the appropriate cells (rows and columns) using a keyboard.

▷ Other possible data entry programs: STATA, SPSS, Microsoft Access, EpiInfo, and REDCap (more in a bit).

▷ CAUTION! Not good enough that data is merely entered into a spreadsheet.

- Data often are entered without an eye toward statistical analysis.
- Many spreadsheets require considerable cleaning before they are suitable for analysis.
- There are ways to enter data so that they are nearly unusable the Spreadsheet from Hell.

Spreadsheet from Hell

Compariso	Comparison of Drug A and Drug B								
Drug A	Age of	Patient	Height	Weight	blood pressure	tumor	Race	Date	
	Patient	Gender	(inches)	(pound)		stage		enrolled	
1	25	Male	61"	>350	120/80 2-3		Hipanic	1/15/99	
2	65+	female	5'8"	161	140/90	11	White	2/05/1999	
3	?	Male	120cm		>160/110	IV	Black	Jan 98	
4	31	m	5'6"	obse	140 sys 105 dias	?	Afr-Amer	?	
5	42	f	>6 ft	normal	missing	=>2	W	Feb 99	
6	45	f	5.7	160	80/120	NA	B	last fall	
7	unknown	?	6	145	normal	1	W	2/30/99	
8	55	m	72	161.45	120/95	4	Afr-Amer	6-15-00	
9	6 months	f	66	174	160/110	3	Asian	14/12/00	
10	21	f	5'						
Drug B									
1	55	m	61	145	120/80 120/90	IV	Nat Amer	6/20/	
2	45	f	4"11	166	135/95	2b none		7/14/99	
3	32	male	5'13"	171	140/80	not staged	NA	8/30/99	
4	44	na	65	?	120/80	2	?	09/01/00	
5	66	fem	71	0	140/90	4	w	Sep 14th	
6	71	unknown	172	199	>160/110	3	b	unknown	
7	45	m	?	204	140 sys 105 dias	40 sys 105 dias 1		12/25/00	
8	34	m	NA	145	130 3		w	July 97	
9	13	m	66	161	166/115 2a		w	06/06/99	
10	66	m	68	176	1120/80	3	w	01/21/58	
Average	45		65	155					
heresa A Sco	ott. MS (Van	dv Biostats)		Data Collect	ion & Entry	13 / 24			

Data entry guidelines

- ▷ Goal: Create your data file(s) to achieve
 - 1 a smooth transfer between a spreadsheet and a statistical program package
 - **2** optimal statistical analysis.

▷ Standard data structure: A table of numbers and text in which each row corresponds to an individual subject (or unit of analysis) and each column corresponds to a different variable or measurement.

- One record (row) per subject.
- Example: For a study that recorded the identification number, age, sex, height, and weight of 10 subjects, the resulting data file would be composed of 10 rows and 5 columns.

▷ Data structure for *repeated measurements* on the same subject (or unit of analysis).

- Example: A study where 5 weekly blood pressure readings are made on each of 20 subjects.
- Two options: a "wide" data file or a "long" data file.
 - "Wide": 20 rows and 6 columns (5 blood pressures and an ID).
 - Still have one record (row) per subject.
 - "Long": 100 rows of 3 columns (ID, week number (1-5), and blood pressure).
 - Have 5 records (rows) per subject.
 - Which option to use will depend on the target statistical program.

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

Data entry guidelines, cont'd

▷ *First row* of the spreadsheet should contain only (legal) *variable names*.

- Definition of "legal" will vary with the target statistical program.
- All programs will accept variable names that are no more than 8 characters long, are composed ONLY of letters, numbers, and underscores, and begin with a letter.
- Good idea to name all variables using lower case, which is easier to type and eliminates mistakes that can occur if software programs are case sensitive (e.g., "Age" vs "age").
- Each variable name should be unique.

▷ Actual data values begin on the *second row*.

15 / 24

 \triangleright Assign each subject (or unit of analysis) a *unique identifier* (ID; eg,

- 1, 2, 3, etc).
 - Because of HIPAA, the statistician is not allowed to receive data files containing any identifiers.
 - Includes patient name (first, last, or initials), social security number, medical record (MR) number, street address, and telephone numbers.
 - IDs should not contain any of this information.
 - Create a separate file that matches the identifying information for each subject (unit of analysis) with their unique ID.
 - Place the assigned unique IDs in the *first column* of your data file(s) to distinguish the subjects on each row.
 - OK to have identifying info in your data files(s) for yourself during data entry; just need to remove it before you send it to your statistician.

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

17 / 24

Data entry guidelines, cont'd

▷ No text should be entered in a column intended for numbers – ie, don't mix text and numbers in the same column.

- This includes notations such as "<20", "20+" and "20%".
- If text strings are present, the statistical package may consider all of the data to be text strings rather than numbers.
- In addition, numerical data may be mistakenly identified as text strings when one or more spaces are typed into an otherwise empty cell.
- Exception to this rule: entering text values that distinguish missing data (eg, NA).

▷ There should be *no embedded formulas*.

- The statistical programs may not be able to handle them.
- Also, the calculated value of a formula is replaced with a blank cell when the spreadsheet is exported as a delimited text file.
- There are two ways to deal with formulas:
 - 1 Rewrite the formulas in the target package so the statistics package can (re-)generate the values.
 - 2 Use Microsoft Excel's "Paste Special" capabilities to store the derived values as actual data values in the spreadsheet.
 - Still a good idea to double-check the calculated values in the target statistical package.

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

Data entry guidelines, cont'd

 \triangleright When a study will generate *multiple data files*:

- Every record in every data file must contain a subject (or unit of analysis) identifier that is consistent across all files.
- Data files that are likely to be merged should not use the same variable names (other than the common ID variable).

▷ For studies that generate repeated measurements on the same subject (or unit of analysis), multiple data files often make data entry and management easier.

■ One data file contains the information that is not repeatedly collected (eg, demographics such as age, race, and gender; 1 record per), the other data file(s) contain(s) the information that is repeatedly collected (eg, blood pressure collected every week for 5 weeks; "long" format of ≥1 record per).

19 / 24

▷ How *missing data* is recorded must be carefully considered.

- Can use a single value to record missing data across all rows and columns.
 - Example: "NA", ".", or a blank cell.
 - Possible problems with specific choice of value:
 - Example: If missing data are coded as "99" and the statistician is not aware of this, a subject who has a missing value for age may be analyzed as if their age is 99 years.
- Can use several values depending on nature of the data or desire during the analysis.
 - Example: Use ".a" for missing, ".b" for don't know, and ".c" for values that are not applicable.
 - In the analysis, all these values are treated as missing, but the reason the data are missing is retained.

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

Spreadsheet from Heaven

CASE	GROUP	AGE	SEX	HT	WT	BPSYS	BPDIAS	STAGE	RACE	DATE1
1	1	25	1	61	350	120	80	3	3	1/15/1999
2	1	65	2	68	161	140	90	2	1	2/5/1999
3	1	25	1	47	150	160	110	4	2	1/15/1998
4	1	31	1	66	161	140	105	2	2	4/1/1999
5	1	42	2	72	177	130	70	2	1	2/15/1999
6	1	45	2	67	160	120	80	1	2	3/6/1999
7	1	44	1	72	145	120	80	1	1	2/28/1999
8	1	55	1	72	161	120	95	4	2	6/15/2000
9	1	0.5	2	66	174	160	110	3	4	12/14/2000
10	1	21	2	60	155	190	120	2	2	11/14/2000
11	2	55	1	61	145	120	80	4	5	6/20/1999
12	2	45	2	59	166	135	95	2	1	7/14/1999
13	2	32	1	73	171	140	80	1	1	8/30/1999
14	2	44	2	65	155	120	80	2	2	9/1/2000
15	2	66	2	71	145	140	90	4	1	9/14/1999
16	2	71	1	68	199	160	110	3	2	1/14/1999
17	2	45	1	69	204	140	105	1	2	12/25/2000
18	2	34	1	66	145	130	75	3	1	7/15/1997
19	2	13	1	66	161	166	115	2	1	6/6/1999
20	2	66	1	68	176	120	80	3	1	1/21/1998

Invaluable resource: REDCap

 \triangleright REDCap = *R*esearch *E*lectronic *D*ata *Cap*ture.

▷ Free, secure, web-based application designed exclusively to build online surveys and databases & to support their subsequent data capture and management.

▷ Advantages include

- Easy to use.
- Fast and flexible setup.
- Structured data entry & validation (including automatic type & range checking, calculated fields, & embedded branching logic).
- Multi-site access.
- Ability to export data to common analysis packages (SAS, Stata, R, and SPSS).
- Mid-study modifications possible.
- Ability to import data from external sources.

Theresa A Scott, MS (Vandy Biostats)

Data Collection & Entry

23 / 24

REDCap, cont'd

- > Wesbite: https://redcap.vanderbilt.edu
 - Login with your VUNetID and password.
- \triangleright If havent done so already, first check out the
 - (1) "Training Resources" tab (series of videos that teach you the basics)
 - (2) "Help & FAQ" tab
 - Both also available via links within each database
- ▷ *REDCap (201) Clinic* in MCN D-2221
 - 1st & 3rd Thursday of every month from 10:30 AM 12:00 PM
 - 2nd & 4th Tuesday of every month from 2:00 3:30 PM
 - Co-ran with Janey Wang (member of the REDCap Team)